Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment

Author:

Ping Xu,Yao Baofeng,Zhang Hongguang,Zhang Hongzhi,Liang Jia,Yuan Meng,Niu Kai,Wang Yan

Abstract

The improvement of the overall utilization rate of compressed natural gas (CNG) engine fuel is the basis of efficient energy utilization. On the foundation of heat balance theory of internal combustion engines, this study fully considers the operation characteristics of CNG engines and systematically analyzes the distribution characteristics of different waste heat under variable working conditions. The nonlinear relationship between speed and intercooler heat source becomes evident with the increasing of intake mass flow rate. In accordance with the structural characteristics, the thermodynamic model, heat transfer model and environmental model of dual-loop organic Rankine cycle (DORC) are constructed. The system potential in full working environments is systematically evaluated. Compared with the speed, airmass flow has a significant effect on comprehensive performance of loop. The maximum power, heat transfer area and power output of per unit heat transfer area (POPA) of DORC are 36.42 kW, 23.34 m2, and 1.75 kW/m2, respectively. According to the operating characteristics of different loops, the variation laws of loop performance under the influence of multiple parameters are analyzed. The synergistic influence laws of multiple variables on system performance are also analyzed.

Funder

Beijing Natural Science Foundation

State Key Laboratory of Engines, Tianjin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3