A Medium and Long-Term Runoff Forecast Method Based on Massive Meteorological Data and Machine Learning Algorithms

Author:

Li Yujie,Wei Jing,Wang Dong,Li Bo,Huang Huaping,Xu Bin,Xu Yueping

Abstract

Accurate and reliable predictors selection and model construction are the key to medium and long-term runoff forecast. In this study, 130 climate indexes are utilized as the primary forecast factors. Partial Mutual Information (PMI), Recursive Feature Elimination (RFE) and Classification and Regression Tree (CART) are respectively employed as the typical algorithms of Filter, Wrapper and Embedded based on Feature Selection (FS) to obtain three final forecast schemes. Random Forest (RF) and Extreme Gradient Boosting (XGB) are respectively constructed as the representative models of Bagging and Boosting based on Ensemble Learning (EL) to realize the forecast of the three types of forecast lead time which contains monthly, seasonal and annual runoff sequences of the Three Gorges Reservoir in the Yangtze River Basin. This study aims to summarize and compare the applicability and accuracy of different FS methods and EL models in medium and long-term runoff forecast. The results show the following: (1) RFE method shows the best forecast performance in all different models and different forecast lead time. (2) RF and XGB models are suitable for medium and long-term runoff forecast but XGB presents the better forecast skills both in calibration and validation. (3) With the increase of the runoff magnitudes, the accuracy and reliability of forecast are improved. However, it is still difficult to establish accurate and reliable forecasts only large-scale climate indexes used. We conclude that the theoretical framework based on Machine Learning could be useful to water managers who focus on medium and long-term runoff forecast.

Funder

the Major Project of Zhejiang Natural Science Foundation, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3