Electronic Systems Diagnosis Fault in Gasoline Engines Based on Multi-Information Fusion

Author:

Hu Jie,Huang Tengfei,Zhou Jiaopeng,Zeng Jiawei

Abstract

The rapid development of electronic techniques in automobile has led to an increase of potential safety hazards, thus, a strong on-board diagnostic (OBD) system is desperately needed. To solve the problem of OBD insensitivity to manufacture errors or aging faults, the paper proposes a novel multi information fusion method. The diagnostic model is composed of a data fusion layer, feature fusion layer, and decision fusion layer. They are based on the back propagation (BP) neural network, support vector machine (SVM), and evidence theory, respectively. Algorithms are mainly focused on the reliability allocation of diagnostic results, which come from the data fusion layer and feature fusion layer. A fault simulator system was developed to simulate bias and drift faults of the intake pressure sensor. The real vehicle experiment was carried out to acquire data that are used to verify the availability of the method. Diagnostic results show that the multi-information fusion method improves diagnostic accuracy and reliability effectively. The study will be a promising approach for the diagnosis bias and drift fault of sensors in electronic control systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Fault Diagnosis for Electric Drive Systems of Electrified Vehicles Based on Structural Analysis

2. Diagnosis and Fault-Tolerant Control;Blanke,2006

3. Model-Based Fault Diagnosis Techniques;Simani,2013

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3