Fault Diagnosis Method for Industrial Robots Based on DBN Joint Information Fusion Technology

Author:

Jiao Jian1ORCID,Zheng Xue-jiao1

Affiliation:

1. Chongqing Water Resources and Electric Engineering College, Chongqing 402160, China

Abstract

Aiming at the problems of the traditional industrial robot fault diagnosis model, such as low accuracy, low efficiency, poor stability, and real-time performance in multi-fault state diagnosis, a fault diagnosis method based on DBN joint information fusion technology is proposed. By studying the information processing method and the deep learning theory, this paper takes the fault of the joint bearing of the industrial robot as the research object. It adopts the technique of combining the deep belief network (DBN) and wavelet energy entropy, and the fault diagnosis of industrial robot is studied. The wavelet transform is used to denoise, decompose, and reconstruct the vibration signal of the joint bearing of the industrial robot. The normalized eigenvector of the reconstructed energy entropy is established, and the normalized eigenvector is used as the input of the DBN. The improved D-S evidence theory is used to solve the problem of fusion of high conflict evidence to improve the fault model’s recognition accuracy. Finally, the feasibility of the model is verified by collecting the fault sample data and creating the category sample label. The experiment shows that the fault diagnosis method designed can complete the fault diagnosis of industrial robot well, and the accuracy of the test set is 97.96%. Compared with the traditional fault diagnosis model, the method is improved obviously, and the stability of the model is good; the utility model has the advantages of short time and high diagnosis efficiency and is suitable for the diagnosis work under the condition of coexisting multiple faults. The reliability of this method in the fault diagnosis of the joint bearing of industrial robot is verified.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3