Analysis of Structural Health Monitoring Data with Correlated Measurement Error by Bayesian System Identification: Theory and Application

Author:

Mu He-QingORCID,Liang Xin-Xiong,Shen Ji-Hui,Zhang Feng-Liang

Abstract

Measurement error is non-negligible and crucial in SHM data analysis. In many applications of SHM, measurement errors are statistically correlated in space and/or in time for data from sensor networks. Existing works solely consider spatial correlation for measurement error. When both spatial and temporal correlation are considered simultaneously, the existing works collapse, as they do not possess a suitable form describing spatially and temporally correlated measurement error. In order to tackle this burden, this paper generalizes the form of correlated measurement error from spatial correlation only or temporal correlation only to spatial-temporal correlation. A new form of spatial-temporal correlation and the corresponding likelihood function are proposed, and multiple candidate model classes for the measurement error are constructed, including no correlation, spatial correlation, temporal correlation, and the proposed spatial-temporal correlation. Bayesian system identification is conducted to achieve not only the posterior probability density function (PDF) for the model parameters, but also the posterior probability of each candidate model class for selecting the most suitable/plausible model class for the measurement error. Examples are presented with applications to model updating and modal frequency prediction under varying environmental conditions, ensuring the necessity of considering correlated measurement error and the capability of the proposed Bayesian system identification in the uncertainty quantification at the parameter and model levels.

Funder

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3