Identification Algorithm for Stability Improvement of Welding Robot End-Effector

Author:

Liu Lijian1,Zhang Yongkang1,Wei Bin1,Yang Guang1

Affiliation:

1. College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Abstract

Aiming to solve the problem that the significant error between the actual joint torque and the calculated joint torque of a welding robot leads to the vibration of the end-effector, which in turn affects the stability of the end-effector, this paper proposes a identification algorithm based on the Weighted Least Squares Genetic Algorithm (WLS-GA) to construct and solve the dynamical model to obtain the accurate dynamical parameters. Firstly, a linear model of welding robot dynamics is derived. The fifth-order optimal Fourier series excitation trajectory is designed to collect experimental data such as joint torque. Then, a rough solution of the parameters to be recognized is obtained by solving the dynamics model through the Weighted Least Squares (WLS) method, the search space is determined based on the rough solution, and the optimal solution is obtained by using the Genetic Algorithm (GA) to perform a quadratic search in the search space. Finally, the identification data obtained from the algorithm is analyzed and compared with the experimental data. The results show that the error between the identification data obtained using the WLS-GA identification algorithm and the experimental data is relatively small. The results show that the identification data obtained using the WLS-GA identification algorithm have less error than the experimental data, taking the Root Mean Square (RMS) value of the joint torque error obtained using the weighted least squares algorithm as a criterion. The accuracy of the WLS-GA identification algorithm can be improved by up to 66.85% compared with that of the weighted least squares algorithm and by up to 78.0% compared with that of the Ordinary Least Squares (OLS) algorithm. In summary, the WLS-GA identification algorithm can accurately identify the dynamic parameters of the welding robot and more accurately construct a dynamic model to solve the effect of joint torque error on the control characteristics of the welding robot. It can improve the stability of the end-effector of the welding robot to ensure the quality of the automobile body and beam welding and welding speed.

Funder

Youth Fund Project of the Science and Technology Research Project of Colleges and universities in Hebei Province

Natural Science Foundation of Hebei Province, Beijing-Tianjin-Hebei Basic Research Cooperation Project

Hebei Provincial Department of Human Resources and Social Security, Hebei Province Three Talent Project Funding Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3