Author:
Zhao Fan,Liu Laijun,Yang Yang,Wang Fujun,Wang Lu
Abstract
Abstract: Polymeric bioresorbable stents (PBRSs) are considered the most promising devices to treat cardiovascular diseases. However, the mechanical weakness still hampers their application. In general, PBRSs are crimped into small sheathes and re-expanded to support narrowed vessels during angioplasty. Accordingly, one of the most significant requirements of PBRSs is to maintain mechanical efficacy after implantation. Although a little research has focused on commercial balloon-expanding PBRSs, a near-total lack has appeared on self-expanding PBRSs and their deformation mechanisms. In this work, self-expanding, composite polymeric bioresorbable stents (cPBRSs) incorporating poly(p-dioxanone) (PPDO) and polycaprolactone (PCL) yarns were produced and evaluated for their in vitro crimping and expanding potential. Furthermore, the polymer time-reliable viscoelastic effects of the structural and mechanical behavior of the cPBRSs were analyzed using computational simulations. Our results showed that the crimping process inevitably decreased the mechanical resistance of the cPBRSs, but that this could be offset by balloon dilatation. Moreover, deformation mechanisms at the yarn level were discussed, and yarns bonded in the crossings showed more viscous behavior; this property might help cPBRSs to maintain their structural integrity during implantation.
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献