Novel Self-expanding Shape-Memory Bioresorbable Peripheral Stent Displays Efficient Delivery, Accelerated Resorption, and Low Luminal Loss in a Porcine Model

Author:

Glushchenko Leonid1ORCID,Hubbard Brad2,Sedush Nikita1,Shchepochkin Vladislav1,Krupnin Artur1ORCID,Sharafeev Aidar1

Affiliation:

1. Resotech Medical Solutions Corp, Delaware, USA

2. Pathway Preclinical Services, Minneapolis, MN, USA

Abstract

Objective and Design: The search for improved stenting technologies to treat peripheral artery disease is trending toward biodegradable self-expanding shape-memory stents that, as of now, still suffer from the acute trade-off between deliverability and luminal stability: Higher deliverability leads to lower lumen stability, vessel recoil, and stent breakage. This study was aimed at the development and testing of a self-expanding bioresorbable poly(l,l-lactide-co-ε-caprolactone) stent that was designed to produce confident self-expansion after efficient crimping, as well as quick bioresorption, and sufficient radial force. Materials and Methods: Bench tests were employed to measure shape-memory properties, radial force, and hydrolytic degradation of the stent. The porcine model was employed to study deliverability, lumen stability, biocompatibility, and stent integrity. A total of 32 stents were implanted in the iliac arteries of 16 pigs with 15 to 180 day follow-up periods. The stented vessels were studied by angiography and histological evaluation. Results: Recovery of the diameter of the stent due to shape-memory effect was equal to 90.6% after 6Fr crimping and storage in refrigeration for 1 week. Radial force measured after storage was equal to 0.7 N/mm. Technical success of implantation in pigs (after the delivery implemented by pusher) was 94%. At 180 days, no implanted stents were found to be fragmented: All of the devices remained at the site of implantation with no stent migration and all stents retained their luminal support. Only moderate inflammation and neoepithelialization were detected by histological assessment at 60, 90, 120, and 180 days. Lumen loss at 180 days was less than 25% of the vessel diameter. Conclusions: The stent with the mechanical and chemical properties described in this study may present the optimal solution of the trade-off between deliverability and luminal stability that is necessary for designing the next generation stent for endovascular therapy of peripheral arterial disease.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

Reference16 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3