Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5)

Author:

Sadka Avi,Qin QiaopingORCID,Feng Jianrong,Farcuh Macarena,Shlizerman Lyudmila,Zhang Yunting,Toubiana David,Blumwald EduardoORCID

Abstract

The enzyme 1-amino-cyclopropane-1-carboxylic acid synthase (ACS) participates in the ethylene biosynthesis pathways and it is tightly regulated transcriptionally and post-translationally. Notwithstanding its major role in climacteric fruit ripening, the transcriptional regulation of ACS during ripening is not fully understood. We studied fruit ripening in two Japanese plum cultivars, the climacteric Santa Rosa (SR) and its non-climacteric bud sport mutant, Sweet Miriam (SM). As the two cultivars show considerable difference in ACS expression, they provide a good system for the study of the transcriptional regulation of the gene. To investigate the differential transcriptional regulation of ACS1 genes in the SR and SM, their promoter regions, which showed only minor sequence differences, were isolated and used to identify the binding of transcription factors interacting with specific ACS1 cis-acting elements. Three transcription factors (TFs), abscisic acid-insensitive 5 (ABI5), GLABRA 2 (GL2), and TCP2, showed specific binding to the ACS1 promoter. Synthetic DNA fragments containing multiple cis-acting elements of these TFs fused to β-glucuronidase (GUS), showed the ABI5 binding site mediated ethylene and abscisic acid (ABA) responses of the promoter. While TCP2 and GL2 showed constant and similar expression levels in SM and SR fruit during ripening, ABI5 expression in SM fruits was lower than in SR fruits during advanced fruit ripening states. Overall, the work demonstrates the complex transcriptional regulation of ACS1.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3