A Laboratory for the Integration of Geomatic and Geomechanical Data: The Rock Pinnacle “Campanile di Val Montanaia”

Author:

Tavasci Luca1ORCID,Lambertini Alessandro1ORCID,Donati Davide1ORCID,Girelli Valentina Alena1ORCID,Lattanzi Giovanni2ORCID,Castellaro Silvia2ORCID,Gandolfi Stefano1ORCID,Borgatti Lisa1ORCID

Affiliation:

1. Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

2. Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy

Abstract

This work describes a procedure for building a high-quality 3D model of a rocky pinnacle in the Dolomites, Italy, using Structure from Motion (SfM) techniques. The pinnacle, known as “Campanile di Val Montanaia”, is challenging to survey due to its high elevation and sub-vertical cliffs. The construction of the 3D model is the first step in a multi-disciplinary approach to characterize the rock mass and understand its behavior and evolution. This paper discusses the surveying operations, which involved climbing the pinnacle to collect Ground Control Points (GCPs) and using a UAV to capture aerial imagery. The photographs were processed using SfM software to generate point clouds, mesh, and texture, which were then used for rock mass discontinuity mapping. The study compares models of different qualities and point densities to determine the optimal trade-off between processing time and accuracy in terms of discontinuity mapping. The results show that higher quality models allow for more detailed mapping of discontinuities, with some drawbacks due to noise in the case of the densest solution (e.g., increase in frequency of outliers across the point cloud). These pros and cons are also discussed in relation to the computational cost necessary to build the models. The study also examines the limitations and challenges of performing discontinuity mapping in the different models, including subjectivity in interpretation. A further element of interest is the publication of a high-quality 3D georeferenced model of the “Campanile di Val Montanaia” to be used for several potential further applications, such as stability analyses and numerical modeling.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3