The Apparent Resilience of the Dry Tropical Forests of the Nicaraguan Region of the Central American Dry Corridor to Variations in Climate Over the Last C. 1200 Years

Author:

Harvey William J.ORCID,Stansell Nathan,Nogué Sandra,Willis Katherine J.

Abstract

The Central American Dry Corridor (CADC) is the most densely populated area of the Central American Isthmus and is subject to the greatest variability in precipitation between seasons. The vegetation of this region is composed of Dry Tropical Forests (DTF), which are suggested to be highly susceptible to variations in climate and anthropogenic development. This study examines the vulnerability of past DTF surrounding the Asese peninsula, Nicaragua to climatic and anthropogenic disturbances over the past c. 1200 years. Past vegetation, climate, burning, and animal abundance were reconstructed using proxy analysis of fossil pollen, diatoms, macroscopic charcoal, and Sporormiella. Results from this research suggest that DTF have been highly resilient to past climatic and anthropogenic perturbations. Changes in DTF structure and composition appear to be linked to the abundance and intensity of fire. Pre-Columbian anthropogenic impacts on DTF are not detected in the record; however, DTF taxa decline slightly after European contact (1522 C.E.). Overall the DTF for the Nicaraguan region of the CADC were found to be highly resilient to both climatic and anthropogenic disturbances, suggesting that this region will continue to be resilient in the face of future population expansion and climatic variation.

Funder

Natural Environment Research Council

National Science Foundation

St. Edmund Hall, University of Oxford

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes

Reference134 articles.

1. Analysis of the Impact of the drought on food security in Guatemala, El Salvador, and Hondurashttps://documents.wforg/stellent/groups/public/documents/ena/wfp277948.pdf?_ga=2.194671341.1933972640.1559121603-515777643.1559121603

2. Impacts of Climate Change on Ecosystem Hydrological Services of Central America: Water Availability;Imbach,2015

3. Role of moisture transport for Central American precipitation

4. Possible role of climate in the collapse of Classic Maya civilization

5. Climate change on the Yucatan Peninsula during the Little Ice Age

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3