Performance Analysis on the Small-Scale Reusable Launch Vehicle

Author:

Gong Zheng,Wang ZianORCID,Yang Chengchuan,Li Zhengxue,Dai MingzheORCID,Zhang ChengxiORCID

Abstract

According to the symmetrical characteristics of a new type of Reusable Launch Vehicle (RLV) in the recovery phase, we studied the basic aerodynamic model data of Starship and the aerodynamic data with rudder deflection, and the causes of its aerodynamic coefficients are expounded. At the same time, we analyzed its stability and maneuverability. According to the flying quality requirements, the lateral-directional model of Starship in the return phase at a high angle of attack is analyzed. Finally, we analyzed the lateral heading stability and control deviation of Starship by using the criterion and nonlinear open-loop simulations. The results show that the Starship has pitching and rolling stability, but it only has heading stability in some ranges of angle of attack, and there is no heading stability at a conventional large angle of attack. At the same time, after modal analysis and comparison of flight quality, it can be seen that the longitudinal long-period model of the starship degenerates into a real root and it is stable and convergent. The lateral heading roll mode is at level 2 flight quality, the helical mode is at level 1 flight quality, and the Dutch roll mode diverges, which needs to be stabilized and controlled later.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference36 articles.

1. Aeroservoelastic Analysis of the B-2 Bomber

2. Residual pitch oscillation (rpo) flight test and analysis on the b-2 bomber;Jacobson;Ices J. Mar. Sci.,2003

3. Multiobjective optimization design of aerodynamic configuration constrained by stealth performance;Su;Acta Aerodyn. Sin.,2006

4. Space Shuttle main engine progress through the first flight;Johnson;Proceedings of the 17th Joint Propulsion Conference,1981

5. SpaceX Aims for Starship Crew Flights By 2023;Klotz;Aerosp. Dly. Def. Rep.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3