Alcoholic Fermentation Monitoring and pH Prediction in Red and White Wine by Combining Spontaneous Raman Spectroscopy and Machine Learning Algorithms

Author:

Fuller Harrison,Beaver Chris,Harbertson James

Abstract

In the following study, total sugar concentrations before and during alcoholic fermentation, as well as ethanol concentrations and pH levels after fermentation, of red and white wine grapes were successfully predicted using Raman spectroscopy. Fluorescing compounds such as anthocyanins and pigmented phenolics found in red wine present one of the primary limitations of enological analysis using Raman spectroscopy. Unlike the spontaneous Raman effect, fluorescence is a highly efficient process and consequently emits a much stronger signal than spontaneous Raman scattering. For this reason, many enological applications of Raman spectroscopy are impractical as the more subtle Raman spectrum of any red wine sample is in large part masked by fluorescing compounds present in the wine. This work employs a simple extraction method to mitigate fluorescence in finished red wines. Ethanol and total sugars (fructose plus glucose) of wines made from red (Cabernet Sauvignon) and white (Chardonnay, Sauvignon Blanc, and Gruner Veltliner) varieties were modeled using support vector regression (SVR), partial least squares regression (PLSR) and Ridge regression (RR). The results, which compared the predicted to measured total sugar concentrations before and during fermentation, were excellent (R2SVR = 0.96, R2PLSR = 0.95, R2RR = 0.95, RMSESVR = 1.59, RMSEPLSR = 1.57, RMSERR = 1.57), as were the ethanol and pH predictions for finished wines after phenolic stripping with polyvinylpolypyrrolidone (R2SVR = 0.98, R2PLSR = 0.99, R2RR = 0.99, RMSESVR = 0.23, RMSEPLSR = 0.21, RMSERR = 0.23). The results suggest that Raman spectroscopy is a viable tool for rapid and trustworthy fermentation monitoring.

Funder

Washington Research Advisory Committee, the Washington Wine Commission and the Wash-ington Grape and Wine Research Program

Publisher

MDPI AG

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3