Biotechnological Modification of Cider Brewing Processes for the Enhanced Production of 2-Phenylethanol

Author:

Wilson Arron,Johnson Joel B.ORCID,Naiker Mani

Abstract

Consumers of Australian cider are currently trending towards higher-quality cider products. As a result, boutique and craft cider breweries are expected to experience a period of growth over the next five years. Supporting this trend and subsequent growth is paramount to rebuilding the cider industry post-COVID-19. Many current practices and procedures, such as must clarification and biomass reduction in cider brewing, have been adapted from the beer and wine industry. While these practices are beneficial to the quality of cider and often promote the production of favourable volatile organic compounds (VOCs), the targeted enhancement of specific VOCs has not been achieved. This work investigates the specific enhancement of 2-phenylethanol (2-PE), which is known to improve the organoleptic properties of cider and provide potential health benefits through its antioxidant properties. The effect of three levels of biomass reduction (90%, 80%, and 0%) and five levels of L-phenylalanine (L-phe) saturation (0.5, 1.0, 1.5, 2.0, and 2.5 g L−1) for the enhanced production of 2-PE during cider fermentation were investigated. A high-performance liquid chromatography method was developed to accurately quantify the concentration of both 2-PE and L-phe, with a root-mean-square deviation (RSMD) of 0.41% and 1.60%, respectively. A significant increase in 2-PE production was achieved for all treatments, with 2-PE levels up to two orders of magnitude higher than respective controls. The highest 2-PE production was achieved by a moderate (80%) biomass reduction at a 2.5 g L−1 L-phe spike. Additionally, the VOC profile of several of the ciders was quantitively determined, and subsequent data underwent extensive chemometric analysis. Principle component analysis (PCA) showed that 2-PE and its derivatives (2-phenylethyl pivalate and phenylacetaldehyde) were correlated with the 80% biomass reduction treatment at the highest L-phe spike. Additionally, it was observed that several acids and alkanes were negatively correlated with the production of 2-PE and its derivatives. Additionally, hierarchical cluster analysis (HCA) showed clustering between the 80% and 90% biomass reduction treatments at several L-phe spike concentrations. However, the 0% biomass reduction treatments only showed similarity with other treatments with 0% biomass reduction. This work provides insight into the production of 2-PE during apple cider fermentation while building the foundation for more targeted biotechnological production of favourable compounds to improve cider quality.

Funder

Central Queensland University (Rockhampton) School of Health, Medical and Applied Sciences

CQUniversity

Publisher

MDPI AG

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3