Modulation by 17,20S(OH)2pD of Fibrosis-Related Mediators in Dermal Fibroblast Lines from Healthy Donors and from Patients with Systemic Sclerosis

Author:

Brown Lobbins Monica L.,Slominski Andrzej T.ORCID,Hasty Karen A.,Zhang SichengORCID,Miller Duane D.ORCID,Li WeiORCID,Kim Tae-Kang,Janjetovic Zorica,Tuckey Robert C.ORCID,Scott Imara-Safi O.,Myers Linda K.ORCID,Postlethwaite Arnold E.

Abstract

We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-β1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-β1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-β1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-β1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.

Funder

National Institute of Health

Department of Veterans Affairs

Scleroderma Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3