Abstract
Although inherited GJA1 (encoding Cx43) gene mutations most often lead to oculodentodigital dysplasia and related disorders, four variants have been linked to erythrokeratodermia variabilis et progressiva (EKVP), a skin disorder characterized by erythematous and hyperkeratotic lesions. While two autosomal-dominant EKVP-linked GJA1 mutations have been shown to lead to augmented hemichannels, the consequence(s) of keratinocytes harboring a de novo P283L variant alone or in combination with a de novo T290N variant remain unknown. Interestingly, these variants reside within or adjacent to a carboxy terminus polypeptide motif that has been shown to be important in regulating the internalization and degradation of Cx43. Cx43-rich rat epidermal keratinocytes (REKs) or Cx43-ablated REKs engineered to express fluorescent protein-tagged P283L and/or T290N variants formed prototypical gap junctions at cell–cell interfaces similar to wildtype Cx43. Dye coupling and dye uptake studies further revealed that each variant or a combination of both variants formed functional gap junction channels, with no evidence of augmented hemichannel function or induction of cell death. Tracking the fate of EKVP-associated variants in the presence of the protein secretion blocker brefeldin A, or an inhibitor of protein synthesis cycloheximide, revealed that P283L or the combination of P283L and T290N variants either significantly extended Cx43 residency on the cell surface of keratinocytes or delayed its degradation. However, caution is needed in concluding that this modest change in the Cx43 life cycle is sufficient to cause EKVP, or whether an additional underlying mechanism or another unidentified gene mutation is contributing to the pathogenesis found in patients. This question will be resolved if further patients are identified where whole exome sequencing reveals a Cx43 P283L variant alone or, in combination with a T290N variant, co-segregates with EKVP across several family generations.
Funder
Canadian Institutes of Health Research
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献