Life cycle of connexins in health and disease

Author:

Laird Dale W.1

Affiliation:

1. Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1

Abstract

Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3