Vegetation and Glacier Trends in the Area of the Maritime Alps Natural Park (Italy): MaxEnt Application to Predict Habitat Development

Author:

Comino ElenaORCID,Fiorucci Adriano,Rosso MaurizioORCID,Terenziani Andrea,Treves Anna

Abstract

Climate change is significantly affecting ecosystem services and leading to strong impacts on the extent and distribution of glaciers and vegetation. In this context, species distribution models represent a suitable instrument for studying ecosystem development and response to climate warming. This study applies the maximum entropy model, MaxEnt, to evaluate trends and effects of climate change for three environmental indicators in the area of the Alpi Marittime Natural Park under the Municipality of Entracque (Italy). Specifically, this study focuses on the magnitude of the retreat of six glaciers and on the distribution of two different plant communities, Alnus viridis scrub and Fagus sylvatica forest associated with Acer pseudoplatanus and tall herbs (megaforbie), in relation to predicted increases in mean temperatures. MaxEnt software was used to model and observe changes over a thirty-year period, developing three scenarios: a present (2019), a past (1980) and a future (2050) using 24 “environmental layers”. This study showed the delicate climate balances of these six small glaciers that, in the next 30 years, are likely to undergo an important retreat (≈−33%) despite the high altitude and important snowfall that still characterize the area. At the same time, it is predicted that the two plant communities will invade those higher altitude territories that, not so long ago, were inhospitable, expanding their habitat by 50%. The MaxEnt application to glaciers has shown to be an effective tool that offers a new perspective in the climate change field as well as in biodiversity conservation planning.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3