Full-Waveform LiDAR Point Clouds Classification Based on Wavelet Support Vector Machine and Ensemble Learning

Author:

Lai Xudong,Yuan Yifei,Li YongxuORCID,Wang Mingwei

Abstract

Light Detection and Ranging (LiDAR) produces 3D point clouds that describe ground objects, and has been used to make object interpretation in many cases. However, traditional LiDAR only records discrete echo signals and provides limited feature parameters of point clouds, while full-waveform LiDAR (FWL) records the backscattered echo in the form of a waveform, which provides more echo information. With the development of machine learning, support vector machine (SVM) is one of the commonly used classifiers to deal with high dimensional data via small amount of samples. Ensemble learning, which combines a set of base classifiers to determine the output result, is presented and SVM ensemble is used to improve the discrimination ability, owing to small differences in features between different types of data. In addition, previous kernel functions of SVM usually cause under-fitting or over-fitting that decreases the generalization performance. Hence, a series of kernel functions based on wavelet analysis are used to construct different wavelet SVMs (WSVMs) that improve the heterogeneity of ensemble system. Meanwhile, the parameters of SVM have a significant influence on the classification result. Therefore, in this paper, FWL point clouds are classified by WSVM ensemble and particle swarm optimization is used to find the optimal parameters of WSVM. Experimental results illustrate that the proposed method is robust and effective, and it is applicable to some practical work.

Funder

Beijing Key Laboratory of Urban Spatial Information Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3