Land Cover Classification Based on Airborne Lidar Point Cloud with Possibility Method and Multi-Classifier

Author:

Zhao Danjing1,Ji Linna1,Yang Fengbao1

Affiliation:

1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Abstract

As important geospatial data, point cloud collected from an aerial laser scanner (ALS) provides three-dimensional (3D) information for the study of the distribution of typical urban land cover, which is critical in the construction of a “digital city”. However, existing point cloud classification methods usually use a single machine learning classifier that experiences uncertainty in making decisions for fuzzy samples in confusing areas. This limits the improvement of classification accuracy. To take full advantage of different classifiers and reduce uncertainty, we propose a classification method based on possibility theory and multi-classifier fusion. Firstly, the feature importance measure was performed by the XGBoost algorithm to construct a feature space, and two commonly used support vector machines (SVMs) were the chosen base classifiers. Then, classification results from the two base classifiers were quantitatively evaluated to define the confusing areas in classification. Finally, the confidence degree of each classifier for different categories was calculated by the confusion matrix and normalized to obtain the weights. Then, we synthesize different classifiers based on possibility theory to achieve more accurate classification in the confusion areas. DALES datasets were utilized to assess the proposed method. The results reveal that the proposed method can significantly improve classification accuracy in confusing areas.

Funder

National Natural Science Foundation of China

Central Government Leading Local Science and Technology Development Fund Project

Postgraduate Science and Technology Project of North University of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3