Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification

Author:

Busquier Mario,Valcarce-Diñeiro Rubén,Lopez-Sanchez Juan M.ORCID,Plaza JavierORCID,Sánchez NildaORCID,Arias-Pérez Benjamín

Abstract

The accurate identification of crops is essential to help environmental sustainability and support agricultural policies. This study presents the use of a Spanish radar mission, PAZ, to classify agricultural areas with a very high spatial resolution. PAZ was recently launched, and it operates at X band, joining the synthetic aperture radar (SAR) constellation along with TerraSAR-X and TanDEM-X satellites. Owing to its novelty and its ability to classify crop areas (both taking individually its time series and blending with the Sentinel-1 series), it has been tested in an agricultural area of the central-western part of Spain during 2020. The random forest algorithm was selected to classify the time series under five alternatives of standalone/fused data. The map accuracy resulting from the PAZ series standalone was acceptable, but it highlighted the need for a denser time-series of data. The overall accuracy provided by eight PAZ images or by eight Sentinel-1 images was below 60%. The fusion of both sets of eight images improved the overall accuracy by more than 10%. In addition, the exploitation of the whole Sentinel-1 series, with many more observations (up to 40 in the same temporal window) improved the results, reaching an overall accuracy around 76%. This overall performance was similar to that obtained by the joint use of all the available images of the two frequency bands (C and X).

Funder

Agencia Estatal de Investigación

European Regional Development Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3