Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models

Author:

Skakun SergiiORCID,Vermote Eric,Franch Belen,Roger Jean-ClaudeORCID,Kussul Nataliia,Ju Junchang,Masek Jeffrey

Abstract

A combination of Landsat 8 and Sentinel-2 offers a high frequency of observations (3–5 days) at moderate spatial resolution (10–30 m), which is essential for crop yield studies. Existing methods traditionally apply vegetation indices (VIs) that incorporate surface reflectances (SRs) in two or more spectral bands into a single variable, and rarely address the incorporation of SRs into empirical regression models of crop yield. In this work, we address these issues by normalizing satellite data (both VIs and SRs) derived from NASA’s Harmonized Landsat Sentinel-2 (HLS) product, through a phenological fitting. We apply a quadratic function to fit VIs or SRs against accumulated growing degree days (AGDDs), which affects the rate of crop development. The derived phenological metrics for VIs and SRs, namely peak, area under curve (AUC), and fitting coefficients from a quadratic function, were used to build empirical regression winter wheat models at a regional scale in Ukraine for three years, 2016–2018. The best results were achieved for the model with near infrared (NIR) and red spectral bands and derived AUC, constant, linear, and quadratic coefficients of the quadratic model. The best model yielded a root mean square error (RMSE) of 0.201 t/ha (5.4%) and coefficient of determination R2 = 0.73 on cross-validation.

Funder

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3