Abstract
A combination of Landsat 8 and Sentinel-2 offers a high frequency of observations (3–5 days) at moderate spatial resolution (10–30 m), which is essential for crop yield studies. Existing methods traditionally apply vegetation indices (VIs) that incorporate surface reflectances (SRs) in two or more spectral bands into a single variable, and rarely address the incorporation of SRs into empirical regression models of crop yield. In this work, we address these issues by normalizing satellite data (both VIs and SRs) derived from NASA’s Harmonized Landsat Sentinel-2 (HLS) product, through a phenological fitting. We apply a quadratic function to fit VIs or SRs against accumulated growing degree days (AGDDs), which affects the rate of crop development. The derived phenological metrics for VIs and SRs, namely peak, area under curve (AUC), and fitting coefficients from a quadratic function, were used to build empirical regression winter wheat models at a regional scale in Ukraine for three years, 2016–2018. The best results were achieved for the model with near infrared (NIR) and red spectral bands and derived AUC, constant, linear, and quadratic coefficients of the quadratic model. The best model yielded a root mean square error (RMSE) of 0.201 t/ha (5.4%) and coefficient of determination R2 = 0.73 on cross-validation.
Subject
General Earth and Planetary Sciences
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献