Detection and Localisation of Abnormal Parathyroid Glands: An Explainable Deep Learning Approach

Author:

Apostolopoulos Dimitris J.,Apostolopoulos Ioannis D.ORCID,Papathanasiou Nikolaos D.,Spyridonidis Trifon,Panayiotakis George S.

Abstract

Parathyroid scintigraphy with 99mTc-sestamibi (MIBI) is an established technique for localising abnormal parathyroid glands (PGs). However, the identification and localisation of PGs require much attention from medical experts and are time-consuming. Artificial intelligence methods can offer an assisting solution. This retrospective study enrolled 632 patients who underwent parathyroid scintigraphy with double-phase and thyroid subtraction techniques. The study proposes a three-path approach, employing the state-of-the-art convolutional neural network called VGG19. Images input to the model involved a set of three scintigraphic images in each case: MIBI early phase, MIBI late phase, and 99mTcO4 thyroid scan. A medical expert’s diagnosis provided the ground truth for positive/negative results. Moreover, the visualised suggested areas of interest produced by the Grad-CAM algorithm are examined to evaluate the PG-level agreement between the model and the experts. Medical experts identified 545 abnormal glands in 452 patients. On a patient basis, the deep learning (DL) model attained an accuracy of 94.8% (sensitivity 93.8%; specificity 97.2%) in distinguishing normal from abnormal scintigraphic images. On a PG basis and in achieving identical positioning of the findings with the experts, the model correctly identified and localised 453/545 glands (83.1%) and yielded 101 false focal results (false positive rate 18.23%). Concerning surgical findings, the expert’s sensitivity was 89.68% on patients and 77.6% on a PG basis, while that of the model reached 84.5% and 67.6%, respectively. Deep learning in parathyroid scintigraphy can potentially assist medical experts in identifying abnormal findings.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference26 articles.

1. Parathyroid Adenoma;Wieneke;Head Neck Pathol.,2008

2. Genetics of Parathyroid Tumours;Thakker;J. Intern. Med.,2016

3. Overview of the 2022 WHO Classification of Parathyroid Tumors;Erickson;Endocr. Pathol.,2022

4. The EANM Practice Guidelines for Parathyroid Imaging;Giovanella;Eur. J. Nucl. Med. Mol. Imaging,2021

5. Benign-Malignant Pulmonary Nodule Classification in Low-Dose CT with Convolutional Features;Astaraki;Phys. Med.,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3