Explainable Artificial Intelligence Method (ParaNet+) Localises Abnormal Parathyroid Glands in Scintigraphic Scans of Patients with Primary Hyperparathyroidism

Author:

Apostolopoulos Dimitris J.1,Apostolopoulos Ioannis D.2ORCID,Papathanasiou Nikolaos D.1,Spyridonidis Trifon1,Panayiotakis George S.2

Affiliation:

1. Department of Nuclear Medicine, University Hospital of Patras, University of Patras, 26504 Patras, Greece

2. Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece

Abstract

The pre-operative localisation of abnormal parathyroid glands (PG) in parathyroid scintigraphy is essential for suggesting treatment and assisting surgery. Human experts examine the scintigraphic image outputs. An assisting diagnostic framework for localisation reduces the workload of physicians and can serve educational purposes. Former studies from the authors suggested a successful deep learning model, but it produced many false positives. Between 2010 and 2020, 648 participants were enrolled in the Department of Nuclear Medicine of the University Hospital of Patras, Greece. An innovative modification of the well-known VGG19 network (ParaNet+) is proposed to classify scintigraphic images into normal and abnormal classes. The Grad-CAM++ algorithm is applied to localise the abnormal PGs. An external dataset of 100 patients imaged at the same department who underwent parathyroidectomy in 2021 and 2022 was used for evaluation. ParaNet+ agreed with the human readers, showing 0.9861 on a patient-level and 0.8831 on a PG-level basis under a 10-fold cross-validation on the training set of 648 participants. Regarding the external dataset, the experts identified 93 of 100 abnormal patient cases and 99 of 118 surgically excised abnormal PGs. The human-reader false-positive rate (FPR) was 10% on a PG basis. ParaNet+ identified 99/100 abnormal cases and 103/118 PGs, with an 11.2% FPR. The model achieved higher sensitivity on both patient and PG bases than the human reader (99.0% vs. 93% and 87.3% vs. 83.9%, respectively), with comparable FPRs. Deep learning can assist in detecting and localising abnormal PGs in scintigraphic scans of patients with primary hyperparathyroidism and can be adapted to the everyday routine.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3