Characterisation of Omicron Variant during COVID-19 Pandemic and the Impact of Vaccination, Transmission Rate, Mortality, and Reinfection in South Africa, Germany, and Brazil

Author:

Ribeiro Xavier CarolinaORCID,Sachetto Oliveira RafaelORCID,da Fonseca Vieira ViníciusORCID,Lobosco MarceloORCID,Weber dos Santos RodrigoORCID

Abstract

Several variants of SARS-CoV-2 have been identified in different parts of the world, including Gamma, detected in Brazil, Delta, detected in India, and the recent Omicron variant, detected in South Africa. The emergence of a new variant is a cause of great concern. This work considers an extended version of an SIRD model capable of incorporating the effects of vaccination, time-dependent transmissibility rates, mortality, and even potential reinfections during the pandemic. We use this model to characterise the Omicron wave in Brazil, South Africa, and Germany. During Omicron, the transmissibility increased by five for Brazil and Germany and eight for South Africa, whereas the estimated mortality was reduced by three-fold. We estimated that the reported cases accounted for less than 25% of the actual cases during Omicron. The mortality among the nonvaccinated population in these countries is, on average, three to four times higher than the mortality among the fully vaccinated. Finally, we could only reproduce the observed dynamics after introducing a new parameter that accounts for the percentage of the population that can be reinfected. Reinfection was as high as 40% in South Africa, which has only 29% of its population fully vaccinated and as low as 13% in Brazil, which has over 70% and 80% of its population fully vaccinated and with at least one dose, respectively. The calibrated models were able to estimate essential features of the complex virus and vaccination dynamics and stand as valuable tools for quantifying the impact of protocols and decisions in different populations.

Publisher

MDPI AG

Subject

Applied Microbiology and Biotechnology,Biomedical Engineering,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3