Effect of Chitosan Degradation Products, Glucosamine and Chitosan Oligosaccharide, on Osteoclastic Differentiation

Author:

Takeuchi Tomoharu1ORCID,Oyama Midori1,Hatanaka Tomomi12ORCID

Affiliation:

1. Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Japan

2. School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan

Abstract

Chitosan, a natural cationic polysaccharide derived from crustaceans and shellfish shells, is known for its advantageous biological properties, including biodegradability, biocompatibility, and antibacterial activity. Chitosan and its composite materials are studied for their potential for bone tissue repair. However, the effects of chitosan degradation products, glucosamine (GlcN) and chitosan oligosaccharide (COS), on osteoclasts remain unclear. If these chitosan degradation products promote osteoclastic differentiation, careful consideration is required for the use of chitosan and related materials in bone repair applications. Here, we assessed the effects of high (500 μg/mL) and low (0.5 μg/mL) concentrations of GlcN and COS on osteoclastic differentiation in human peripheral blood mononuclear cells (PBMCs) and murine macrophage-like RAW264 cells. A tartrate-resistant acid phosphatase (TRAP) enzyme activity assay, TRAP staining, and actin staining were used to assess osteoclastic differentiation. High concentrations of GlcN and COS, but not low concentrations, suppressed macrophage colony-stimulating factor (M-CSF)- and RANKL-dependent increases in TRAP enzyme activity, TRAP-positive multinuclear osteoclast formation, and actin ring formation in PBMCs without cytotoxicity. Similar effects were observed in the RANKL-dependent osteoclastic differentiation of RAW264 cells. In conclusion, chitosan degradation products do not possess osteoclast-inducing properties, suggesting that chitosan and its composite materials can be safely used for bone tissue repair.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3