Abstract
A new DS (Dempster-Shafer) combination method is presented in this paper. As data detected by a single sensor are characterized by not only fuzziness, but also partial reliability, the development of multi-sensor information fusion becomes extremely indispensable. The DS evidence theory is an effective means of information fusion, which can not only deal with the uncertainty and inconsistency of multi-sensor data, but also handle the inevitably ambiguity and instability under noise or possible interference. However, the application of DS evidence theory has some limitations when multi-sensor data are conflicting. To address this issue, the DS evidence theory is modified in this paper. Adopting the idea of cluster analysis, we firstly introduce the Lance distance function and spectral angle cosine function to revise original evidence separately before the combination of evidence. Then, based on the modifications of original evidence, an improved conflict redistribution strategy is ulteriorly raised to fuse multi-sensor information. Finally, the numerical simulation analyses demonstrate that the improvement of the DS evidence theory available in this paper overcomes the limitations of conventional DS evidence theory, and realizes more reliable fusion with multi-sensor conflicting information compared to the existing methods.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献