Affiliation:
1. School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
2. Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
Abstract
Rare earth elements (REEs) play indispensable roles in various advanced technologies, from electronics to renewable energy. However, the heavy global REEs supply and the environmental impact of traditional mining practices have spurred the search for sustainable REEs recovery methods. Polymeric materials have emerged as promising candidates due to their selective adsorption capabilities, versatility, scalability, and regenerability. This paper provides an extensive overview of polymeric materials for REEs recovery, including polymeric resins, polymer membranes, cross-linked polymer networks, and nanocomposite polymers. Each category is examined for its advantages, challenges, and notable developments. Furthermore, we highlight the potential of polymeric materials to contribute to eco-friendly and efficient REEs recovery, while acknowledging the need to address challenges such as selectivity, stability, and scalability. The research in this field actively seeks innovative solutions to reduce reliance on hazardous chemicals and minimize waste generation. As the demand for REEs continues to rise, the development of sustainable REEs recovery technologies remains a critical area of investigation, with the collaboration between researchers and industry experts driving progress in this evolving field.
Funder
Young and Middle-aged Fund Project of Qinghai Normal University
National college students’ innovation and entrepreneurship training program of China
Natural Science Foundation of China
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献