Simultaneously Recovery of Thorium and Tungsten through Hybrid Electrolysis–Nanofiltration Processes

Author:

Man Geani Teodor12,Albu Paul Constantin3ORCID,Nechifor Aurelia Cristina1ORCID,Grosu Alexandra Raluca1,Popescu (Stegarus) Diana Ionela2,Grosu Vlad-Alexandru4ORCID,Marinescu Virgil Emanuel5,Nechifor Gheorghe1ORCID

Affiliation:

1. Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania

2. National Research and Development Institute for Cryogenics and Isotopic Technologies–ICSI, 240050 Râmnicu Valcea, Romania

3. Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania

4. Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania

5. Department of Physical-Chemical Tests, National Institute for Research and Development in Electrical Engineering ICPE–CA Bucharest, 030138 Bucharest, Romania

Abstract

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether–ether–ketone membranes (sPEEK) and a nanofiltration module with chitosan–polypropylene membranes (C–PHF–M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C–PHF–M membrane.

Funder

Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3