Water Retention Characteristics of Mineral Forest Soils in Finland: Impacts for Modeling Soil Moisture

Author:

Launiainen SamuliORCID,Kieloaho Antti-Jussi,Lindroos Antti-Jussi,Salmivaara Aura,Ilvesniemi Hannu,Heiskanen Juha

Abstract

Soil hydraulic properties are central for soil quality and affect forest productivity and the impacts of climate change on forests. The water retention characteristics (WRC) of mineral forest soils in Finland are not well known, and practical tools to predict them for hydrological, biogeochemical and forest models are lacking. We statistically analyzed mineral forest soils WRC from over 130 sites in Finland, focusing on the humus layer and main root zone (0–19 cm depth). We showed that mineral forest soils can be grouped into five WRC classes that are well predictable from soil bulk density, organic matter content and clay fraction. However, the majority of the forest soils are hydrologically rather similar. We found that neither topsoil maps nor any combination of open geospatial data were able to predict WRC. Thus, in the absence of site-specific soil data, parameterizing WRC as a function of forest site fertility type was proposed. We demonstrated the approach in soil moisture modeling at a small forest headwater catchment and showed that the soil moisture response to weather conditions is jointly affected by WRC, stand attributes and topography. We showed that drought risks are highest for dense mature forests at nutrient-poor, coarse-textured sites and lower for young stands on peatlands and lowland herb-rich sites with groundwater influence. The results improve hydrological predictions for Finnish forests, and the open dataset can contribute to the larger synthesis and development of boreal forest soil pedo-transfer functions.

Funder

Ministry of Agricultural and Forestry of Finland

Academy of Finland

Formas

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3