High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates

Author:

Suo Yongyong,Li Jintao,Deng Zhilun,Wang Bo,Wang Quanzhao,Ni Dingrui,Jia Purong,Suo Tao

Abstract

The high-temperature dynamic compressive properties of a 30 vol.% SiCp/6092Al composite, fabricated using powder metallurgy, were experimentally investigated using the split Hopkinson pressure bar system with an electric furnace. Three different ambient temperatures, namely, room temperature, 200 °C, and 350 °C, were adopted, and the dynamic tests of the composite specimens were conducted at strain rates ranging from 1500 to 4500 s−1. The experimental results showed that the flow stress of the composite was generally insensitive to strain rates at room temperature. However, the composite started exhibiting different strain-rate-dependent behaviors as the temperature increased, and the flow stress nonlinearly varied with increasing temperature. In addition, the microscopic images of the specimens showed that the microscopic failure mechanisms of the composite were greatly influenced by the ambient temperature and strain rate. Specifically, the percentage of failed particles decreased with rising temperature and the dominating failure mode of particles changed significantly as the strain rate increased.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3