The Analysis of Electronic Circuit Fault Diagnosis Based on Neural Network Data Fusion Algorithm

Author:

Wang Nana

Abstract

Symmetries play very important roles in the dynamics of electrical systems. The relevant electronic circuits with fault diagnostics, including the optimized neural network algorithm model, are designed on the basis of symmetry principles. In order to improve the efficiency of the circuit pressure test, a circuit pressure function equivalent compression test method based on the parallel neural network algorithm is proposed. For the implementation stage of the circuit pressure test, the improved modified node algorithm (MNA) is used to build an optimization model, and the circuit network is converted into an ordinary differential equation for the circuit pressure function equivalent compression test. The test aims to minimize flux. Then, backpropagation (BP) neural network algorithm data fusion is introduced to optimize the minimum flux model of the cyclic pressure functional equivalent compression test. Finally, a simulation experiment is carried out to verify the effectiveness of the algorithm in the accuracy and efficiency of the pressure test. The results show that the improved BP neural network improves the data fusion accuracy and shortens the sample training time; compared with the uncompressed algorithm, the running time of the proposed algorithm is greatly reduced and the execution efficiency is high; compared with the vascular pressure test method, there is no significant difference in the convergence accuracy and it is at a level of 10−5. Since the parallel computing problem is not considered in either of the two-pulse tube pressure test methods, the convergence time of the algorithm increases exponentially with the increase in the number of parallel threads. However, the algorithm in this research considers the problem of parallel execution and uses a quad-core processor, with no significant change in computing time and high computing efficiency. Therefore, BP neural network data fusion can be used for the fault diagnosis of electronic circuits, with a high operating efficiency and good development prospects.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3