Effect of Panel Construction on the Ballistic Performance of Multiply 3D through-the-Thickness Angle-Interlock fabrIc Reinforced Composites

Author:

Min Shengnan,Chai Yuan,Chu Yanyan,Chen Xiaogang

Abstract

This paper studied the ballistic performance of 3D woven angle-interlock fabric reinforced composites with different types of panel construction. Two types of composites P10B and P17C were designed to have the same areal density of around 12 kg/m2 although they both had different ply areal densities and consisted of different numbers of plies. Non-perforated ballistic impacts were conducted on the two types of panels under the same level of impact energy. Post-mortem examination on the non-perforated panels was conducted through the cross-sectional images, planar projected delamination and 3D damage volume extracted from the non-destructive tests. Three distinctive sections of damage were segmented from the non-perforated panels, each indicating different material failure modes upon impact. Under the same areal density, the coarser composite panel P10B with a larger ply areal density and fewer reinforcement plies would result in less damage. The damage volume of P10B is nearly one-third that of the P17C. The findings are instructive for the design of 3D woven fabric continuously reinforced composites with doubly-curved shapes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3