Effect of Fiber Fraction on Ballistic Impact Behavior of 3D Woven Composites

Author:

Shi Xiaoping12,Sun Ying12,Xu Jing3,Chen Li12,Zhang Ce12,Zhang Guoli12

Affiliation:

1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China

2. Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials, Tiangong University, Tianjin 300387, China

3. AVIC Aerospace Life-Support Industries LTD, Xiangyang 441003, China

Abstract

This paper studies the ballistic impact performance of 3D woven composites (3DWCs) with hexagonal binding patterns. Para-aramid/polyurethane (PU) 3DWCs with three kinds of fiber volume fraction (Vf) were prepared by compression resin transfer molding (CRTM). The effect of Vf on the ballistic impact behavior of the 3DWCs was analyzed by characterizing the ballistic limit velocity (V50), the specific energy absorption (SEA), the energy absorption per thickness (Eh), the damage morphology and the damage area. 1.1 g fragment-simulating projectiles (FSPs) were used in the V50 tests. Based on the results, when the Vf increases from 63.4% to 76.2%, the V50, the SEA and the Eh increase by 3.5%, 18.5% and 28.8%, respectively. There are significant differences in damage morphology and damage area between partial penetration (PP) cases and complete penetration (CP) cases. In the PP cases, the back-face resin damage areas of the sample III composites were significantly increased to 213.4% of the sample I counterparts. The findings provide valuable information for the design of ballistic protection 3DWCs.

Funder

Tianjin Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3