Dielectric Properties of Epoxy Resin Impregnated Nano-SiO2 Modified Insulating Paper

Author:

Chen Qingguo,Yang HongdaORCID,Wang Xinyu,Liu Heqian,Zhou Kai,Ning Xin

Abstract

Epoxy resin-impregnated insulation paper (RIP) composites are used as the inner insulation of dry condenser bushing in the ultra-high voltage direct current (UHVDC) power transmission system. To improve the dielectric properties of RIP, nano-SiO2 is added to the insulation paper at concentrations of 0–4wt % before impregnation with pure epoxy resin. X-ray diffraction (XRD), scanning electron microscopy observations as well as the typical dielectric properties of relative permittivity, DC volume conductivity, DC breakdown strength, and thermally stimulated depolarization current (TSDC), were obtained. The effects of trap parameters on the breakdown field strength and volume conductivity were investigated. The DC breakdown electric field strength of the sample increased as the trap level increased. The maximum DC breakdown strength of nano-SiO2-modified RIP was increased by 10.6% the nano-SiO2 content of 2 wt %. The relative permittivity and DC volume conductivity were first decreased and then increased with increasing nano-SiO2 content. These changes occurred near the interfaces between nano-SiO2 and RIP. The increased DC breakdown strength was mainly attributed to the increased trap level.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference26 articles.

1. Dielectric properties of epoxy and epoxy/creep paper composites for UHVDC dry casings;Ning;Chin. J. Electr. Eng.,2015

2. Investigation on dielectric properties of epoxy/crepe paper composites for ultra-high voltage DC bushing;Peng;High Voltage App.,2009

3. Dielectric properties of multi-layer epoxy resinimpregnated crepe paper composites

4. Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications

5. Partial discharge resistant characteristics of epoxy nanocomposites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3