Abstract
The behavior of a polymer in a passive crowded medium or in a very dilute active bath has been well studied, while a polymer immersed in an environment featured by both crowding and activity remains an open problem. In this paper, a systematic Langevin simulation is performed to investigate the conformational change of a semi-flexible chain in a concentrated solution packed with spherical active crowders. A very novel shrinkage-to-swelling transition is observed for a polymer with small rigidity. The underlying phase diagram is constructed in the parameter space of active force and crowder size. Moreover, the variation of the polymer gyration radius demonstrates a non-monotonic dependence on the dynamical persistence length of the active particle. Lastly, the activity-crowding coupling effect in different crowder size baths is clarified. In the case of small crowders, activity strengthens the crowding-induced shrinkage to the chain. As crowder size increases, activity turns out to be a contrasting factor to crowding, resulting in a competitive shrinkage and swelling. In the large size situation, the swelling effect arising from activity eventually becomes dominant. The present study provides a deeper understanding of the unusual behavior of a semi-flexible polymer in an active and crowded medium, associated with the nontrivial activity-crowding coupling and the cooperative crowder size effect.
Funder
National Natural Science Foundation of China
Department of Science and Technology of Sichuan Province
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献