Cargo transportation using an active polymer

Author:

Jain Namita1,Thakur Snigdha1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India

Abstract

One of the fundamental goals of bioinspired synthetic systems is to achieve enhanced and controlled transport. Here, we demonstrate the transport of a colloidal cargo with an active filamentous engine. We explore the efficiency of the directional transport of the colloidal cargo by attaching it either at the front (pushing) or at the back (pulling) of the filament. The filament is chemo-mechanically active and acquires the activity by attaching chemically active beads that provide local tangential force along the chain. The effect of the size and location of the load, activity, and bending rigidity is comprehensively explored. We observe a transition from directional to rotational motion for the pushing load filament, whereas no such transition is observed for the filament pulling the load. The transition between different states is characterized using structural properties, such as the radius of gyration, order parameter, and tangent–tangent correlation. With the help of dynamical properties, we show that the modes of propulsion and their efficiency is different for pushing and pulling, which depend on the load size.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3