Abstract
In this study, the formability of woven carbon-fiber (CF)-reinforced polyether-ether-ketone (PEEK) composite sheets in the solid-state thermoforming process were investigated, and the failure mechanisms were discussed. The formability of the woven CF/PEEK sheets were analyzed using flexural tests, Erichsen test, and microscopic observation. The results show that the formability of CF/PEEK sheets significantly increases as the temperature rises from 165 to 325 °C, and slightly decreases as the deformation speed rises from 2 to 120 mm/min. The deformation of the sheets is caused by plastic deformation, shear deformation and squeeze deformation, without plastic thinning and fiber slippage, which is due to the restriction of the solid matrix and locked fibers. Moreover, the wrinkles will cause fiber fracture at lower temperatures and delamination at higher temperatures. At higher temperatures, the wrinkles mainly occur at the position with [0°/90°] fibers due to the squeezing of the matrix and fibers.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
Subject
Polymers and Plastics,General Chemistry
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献