Experimental study on ultrasonic vibration‐assisted drilling performance of carbon fiber polyetherketoneketone laminate

Author:

Wu Nan1,Zhang Liqiang1ORCID,Zhang Meihua1,Xu Panping1,Liu Gang123

Affiliation:

1. School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China

2. Chengdu Zhiyuan Advanced Manufacturing Technology Institute Chengdu China

3. Key Laboratory of Intelligent Manufacturing Technology for Large Complex Thin‐Walled Components of Aviationin Machinery Industry Shanghai China

Abstract

AbstractParts made from carbon fiber reinforced polyetherketoneketone (CF/PEKK) primarily use mechanical connections during assembly, where the quality of hole processing directly impacts the connection strength. However, defects like delamination, burrs, and fiber pull‐out frequently occur during drilling. While existing research focuses on optimizing conventional drilling (CD) and helical milling (HM), ultrasonic vibration‐assisted drilling (UVAD) shows superior performance in reducing thrust force and defects. This study experimentally evaluates the hole‐making performance of CF/PEKK using the UVAD method. It examines the effects of ultrasonic vibration on thrust force, drilling temperature, processing damage, chip morphology, and surface microstructure, and discusses the damage suppression mechanism. The results show that the UVAD method significantly reduces thrust force and drilling temperature compared to the CD method, with similar trends in delamination and burr damage. This study demonstrates that using the UVAD method for drilling CF/PEKK laminates effectively reduces thrust force, drilling temperature, and machining damage, thereby significantly improving processing quality. The material removal mechanism of UVAD was analyzed, offering substantial insights and practical guidance for the efficient drilling of CF/PEKK laminates.Highlights The drilling performance of CF/PEKK was studied. The drilling quality of UVAD and CD is compared by experiments. UVAD has a lower thrust force and drilling temperature. UVAD can reduce machining damage and improve machining quality.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3