Comparison of Experimental and Modeled EMI Shielding Properties of Periodic Porous xGNP/PLA Composites

Author:

Bregman Avi,Michielssen Eric,Taub Alan

Abstract

Microwave absorbing materials, particularly ones that can achieve high electromagnetic interference (EMI) absorption while minimizing weight and thickness are in high demand for many applications. Herein we present an approach that relies on the introduction of periodically placed air-filled pores into polymer composites in order to reduce material requirements and maximize microwave absorption. In this study, graphene nano platelet (xGNP)/poly-lactic acid (PLA) composites with different aspect ratio fillers were characterized and their complex electromagnetic properties were extracted. Using these materials, we fabricated non-perfect electrical conductor (PEC) backed, porous composites and explored the effect of filler aspect ratio and pore geometry on EMI shielding properties. Furthermore, we developed and experimentally verified a computational model that allows for rigorous, high-throughput optimization of absorbers with periodic porous geometries. Finally, we extend the modeling approach to explore the effect of pore addition on PEC-backed composites. Our composite structures demonstrated decreased fractions of reflected power and increased fractions of absorbed power over the majority of the X Band due to the addition of periodically arranged cylindrical pores. Furthermore, we showed that for xGNP/PLA composite material, reflection loss can be increased by as much as 13 dB through the addition of spherical pores. The ability to adjust shielding properties through the fabrication of polymer composites with periodically arranged pores opens new strategies for the modeling and development of new microwave absorption materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3