Abstract
A flexible polyurethane elastomer (PUE) is studied, and the improved impact-resistant performance is revealed. Compressive stress–strain curves over a wide loading rate range were derived. Under static loading, the rubbery-like characteristics are demonstrated, which are flexible and hyperelastic, to process a large strain of about 60% followed by full recovery upon unloading. Under high-rate loadingcompared with the mechanical data of polyurethane elastomer (PUE) and polyurea (PUA) materials in the literature. Orderly parallel deformation bands were formed from carrying a large strain. The fibrils were found between deformation bands for enhancing the yield/plateau stress. A considerable plastic zone ahead of propagating crack with numerous crazes and microcracks was produced for realizing the dynamic strain energy absorption. This work presents a scientific innovation for developing outstanding impact-resistant polyurethane elastomers for transparent protection engineering.
Funder
National Natural Science Foundation of China
Independent Research Project of State Key Laboratory of Explosion Science and Technology
Subject
Polymers and Plastics,General Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献