Impact Strength Properties and Failure Mode Classification of Concrete U-Shaped Specimen Retrofitted with Polyurethane Grout Using Machine Learning Algorithms

Author:

Haruna Sadi Ibrahim1,Ibrahim Yasser E.1ORCID,Ahmed Omar Shabbir1,Farouk Abdulwarith Ibrahim Bibi2ORCID

Affiliation:

1. Engineering Management Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. School of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China

Abstract

The inherent brittle behavior of cementitious composite is considered one of its weaknesses in structural applications. This study evaluated the impact strength and failure modes of composite U-shaped normal concrete (NC) specimens strengthened with polyurethane grout material (NC-PUG) subjected to repeated drop-weight impact loads (USDWIT). The experimental dataset was used to train and test three machine learning (ML) algorithms, namely decision tree (DT), Naïve Ba yes (NB), and K-nearest neighbors (KNN), to predict the three failure modes exhibited by U-shaped specimens during testing. The uncertainty of the failure modes under different uncertainty degrees was analyzed using Monte Carlo simulation (MCS). The results indicate that the retrofitting effect of polyurethane grout significantly improved the impact strength of concrete. During testing, U-shaped specimens demonstrated three major failure patterns, which included mid-section crack (MC), crushing foot (CF), and bend section crack (BC). The prediction models predicted the three types of failure modes with an accuracy greater than 95%. Moreover, the KNN model predicted the failure modes with 3.1% higher accuracy than the DT and NB models, and the accuracy, precision, and recall of the KNN model have converged within 300 runs of Monte Carlo simulation under different uncertainties.

Funder

Structures and Materials Laboratory (S&M Lab) of the College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3