Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping

Author:

Okyere Frank Gyan12,Cudjoe Daniel12,Sadeghi-Tehran Pouria1,Virlet Nicolas1ORCID,Riche Andrew B.1ORCID,Castle March1,Greche Latifa1,Mohareb Fady2,Simms Daniel2,Mhada Manal3ORCID,Hawkesford Malcolm John1ORCID

Affiliation:

1. Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK

2. School of Water, Energy and Environment, Soil, Agrifood and Biosciences, Cranfield University, Bedford MK43 0AL, UK

3. African Integrated Plant and Soil Science, Agro-Biosciences, University of Mohammed VI Polytechnic, Lot 660, Ben Guerir 43150, Morocco

Abstract

Image segmentation is a fundamental but critical step for achieving automated high- throughput phenotyping. While conventional segmentation methods perform well in homogenous environments, the performance decreases when used in more complex environments. This study aimed to develop a fast and robust neural-network-based segmentation tool to phenotype plants in both field and glasshouse environments in a high-throughput manner. Digital images of cowpea (from glasshouse) and wheat (from field) with different nutrient supplies across their full growth cycle were acquired. Image patches from 20 randomly selected images from the acquired dataset were transformed from their original RGB format to multiple color spaces. The pixels in the patches were annotated as foreground and background with a pixel having a feature vector of 24 color properties. A feature selection technique was applied to choose the sensitive features, which were used to train a multilayer perceptron network (MLP) and two other traditional machine learning models: support vector machines (SVMs) and random forest (RF). The performance of these models, together with two standard color-index segmentation techniques (excess green (ExG) and excess green–red (ExGR)), was compared. The proposed method outperformed the other methods in producing quality segmented images with over 98%-pixel classification accuracy. Regression models developed from the different segmentation methods to predict Soil Plant Analysis Development (SPAD) values of cowpea and wheat showed that images from the proposed MLP method produced models with high predictive power and accuracy comparably. This method will be an essential tool for the development of a data analysis pipeline for high-throughput plant phenotyping. The proposed technique is capable of learning from different environmental conditions, with a high level of robustness.

Funder

OCP S.A.

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3