Stability of Phenols, Antioxidant Capacity and Grain Yield of Six Rice Genotypes

Author:

Kunnam Juthathip1,Pinta Wanwipa2,Ruttanaprasert Ruttanachira3,Bunphan Darika4,Thabthimtho Thanasin1,Aninbon Chorkaew1

Affiliation:

1. Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon 47160, Thailand

3. Department of Plant Science, Textile and Design, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Surin 32000, Thailand

4. Department of Agricultural Technology, Faculty of Technology Mahasarakham University, Maha Sarakham 44150, Thailand

Abstract

The environment is the main factor affecting variations in phytochemicals and antioxidant activity in rice. The objective of this study was to evaluate the stability of grain yield, phytochemicals and antioxidant capacity of six rice genotypes. Six rice genotypes were evaluated in a randomized complete block design with three replicates at three locations in Trat, Bangkok and Sakon Nakhon provinces in July–October 2019. Data on grain yield, yield components, total phenolic content, ferulic acid and antioxidant capacity were recorded. Grain yield was highest for crops grown in Bangkok, whereas antioxidant activity was highest for crops grown in Bangkok and Sakon Nakhon. Hom Nang Nual 1 and Mali Nil Boran had the highest grain yield. Riceberry had the highest grain yield in Trat; it also had high levels of total phenolic compounds, ferulic acid and antioxidant activity. Mali Nil Boran, Mali Nil Surin and Riceberry had the most stable total phenolic content, ferulic acid and antioxidant activity, respectively. Information on the levels and variability of phytochemicals in rice enables the selection of genotypes with high and stabile phytochemicals for production and rice breeding.

Funder

Thailand Research Fund

King Mongkut’s Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3