Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors

Author:

Zhao Zirui1,Zhang Yajing1,Li Wenlong1,Tang Yuanhu1,Wang Shujie1ORCID

Affiliation:

1. College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China

Abstract

In this research, the cell growth, physiological, and biochemical reactions, as well as the paclitaxel production, of Taxus cuspidata suspension cells after treatment with polyethylene glycol (PEG), cyclodextrin (CD), or salicylic acid (SA) (alone or in combination) were investigated. To reveal the paclitaxel synthesis mechanism of T. cuspidata suspension cells under elicitor treatment, the transcriptomics of the Control group and P + C + S group (PEG + CD + SA) were compared. The results show that there were no significant differences in cell biomass after 5 days of elicitor treatments. However, the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the activities of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) after elicitor combination treatments were decreased compared with the single-elicitor treatment. Meanwhile, the antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (PO)) and the contents of soluble sugar and soluble protein were increased after combination elicitor treatments. Additionally, the paclitaxel yield after treatment with the combination of all three elicitors (P + C + S) was 6.02 times higher than that of the Control group, thus indicating that the combination elicitor treatments had a significant effect on paclitaxel production in T. cuspidata cell suspension culture. Transcriptomics analysis revealed 13,623 differentially expressed genes (DEGs) between the Control and P + C + S treatment groups. Both GO and KEGG analyses showed that the DEGs mainly affected metabolic processes. DEGs associated with antioxidant enzymes, paclitaxel biosynthesis enzymes, and transcription factors were identified. It can be hypothesized that the oxidative stress of suspension cells occurred with elicitor stimulation, thereby leading to a defense response and an up-regulation of the gene expression associated with antioxidant enzymes, paclitaxel synthesis enzymes, and paclitaxel synthesis transcription factors; this ultimately increased the production of paclitaxel.

Funder

Jilin Province science and technology development key program

Cross-Regional Cooperation Program of Research Institutes

“the 13th Five Year Plan” National Science and Technology in a Rural Area

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3