Dynamics of Non-Structural Carbohydrates Release in Chinese Fir Topsoil and Canopy Litter at Different Altitudes

Author:

Wu Xiaojian1,Cao Yue1,Jiang Yu1,Chen Mingxu1,Zhang Huiguang2,Wu Pengfei1ORCID,Ma Xiangqing1

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Wuyishan National Park Scientific Research Monitoring Center, Wuyishan 354300, China

Abstract

Non-structural carbohydrates (NSCs) are labile components in forest litter that can be released quickly at the early stage of litter decomposition and accelerate the metabolic turnover of soil microorganisms, which is essential for the formation of forest soil organic matter. Therefore, understanding the NSCs response mechanisms to forest litter at different altitudes is critical for understanding nutrient cycling in the forest soil under climate change conditions. In this study, we used the net bag decomposition method to observe the dynamics of NSCs release in Chinese fir topsoil and canopy litter at four altitudes for 360 days based on the climatic zone characteristics distributed vertically along the elevation of Wuyi Mountain. The release of NSCs in Chinese fir litter rise gradually with height increases during the decomposition. The difference of the cumulative release percentage of soluble sugar between different altitudes is more significant than that of starch. The response of the NSC content in different treatment groups at four altitudes are different. The release of NSCs in the leaf canopy litter is higher than that in the leaf topsoil litter. On the contrary, the release of NSCs in the mixture of leaf and twig topsoil litter is higher than that in the mixture of leaf and twig canopy litter. Taken together, this study is of great significance for a comprehensive understanding of the effect of climate change on NSCs during the decomposition of Chinese fir litter.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3