The Role of Nonstructural Carbohydrates Storage in Forest Resilience under Climate Change

Author:

Piper Frida I.,Paula Susana

Abstract

Abstract Purpose of Review Nonstructural carbohydrates (NSC) promote tree survival when photosynthesis is impeded by factors whose impact is expected to increase under climate change, like droughts, herbivory, and fires. Nonetheless, it remains unclear whether NSC are depleted under natural conditions and if they mediate tree recovery. To determine if there is a general pattern of NSC variation, we reviewed the recent (2008–2018) literature reporting NSC changes in response to droughts, insect herbivory, and fires, in woody species under natural conditions. Recent Findings We found 25 cases in 16 studies examining NSC dynamics post-drought, most of them conducted in species of Pinaceae or Fagaceae in Mediterranean Europe. Drought-affected trees had lower NSC, starch, and sugars concentrations than unaffected counterparts, although these results were entirely driven by roots and trunks of Pinaceae. We found only six studies examining NSC responses to herbivory, which indicate both increases and decreases in NSC concentrations inconsistently related to changes in growth or survival. Fire led to consistent decreases in NSC that mediated a successfully regrowth in absence of drought. Summary NSC decrease related equivocally to the occurrence of drought, fire, and herbivory and also to post-disturbance recovery, indicating no clear pattern of decreasing forest resilience under current climate change. An exception seems to be Pinaceae, which showed decreased NSC and performance in response to drought or herbivory. We suggest that a more water conservative strategy and smaller NSC pools in gymnosperms relative to angiosperms underlie these results.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3