Potential of Novel Magnesium Nanomaterials to Manage Bacterial Spot Disease of Tomato in Greenhouse and Field Conditions

Author:

Liao Ying-Yu12,Pereira Jorge34ORCID,Huang Ziyang34ORCID,Fan Qiurong12,Santra Swadeshmukul345ORCID,White Jason C.6,De La Torre-Roche Roberto6,Da Silva Susannah2,Vallad Gary E.7,Freeman Joshua H.2,Jones Jeffrey B.1ORCID,Paret Mathews L.12

Affiliation:

1. Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA

2. North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA

3. Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA

4. NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA

5. Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA

6. Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA

7. Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA

Abstract

Bacterial spot of tomato is among the most economically relevant diseases affecting tomato plants globally. In previous studies, non-formulated magnesium oxide nanoparticles (nano-MgOs) significantly reduced the disease severity in greenhouse and field conditions. However, the aggregation of nano-MgO in liquid suspension makes it challenging to use in field applications. Therefore, we formulated two novel MgO nanomaterials (SgMg #3 and SgMg #2.5) and one MgOH2 nanomaterial (SgMc) and evaluated their physical characteristics, antibacterial properties, and disease reduction abilities. Among the three Mg nanomaterials, SgMc showed the highest efficacy against copper-tolerant strains of Xanthomonas perforans in vitro, and provided disease reduction in the greenhouse experiments compared with commercial Cu bactericide and an untreated control. However, SgMc was not consistently effective in field conditions. To determine the cause of its inconsistent efficacy in different environments, we monitored particle size, zeta potential, morphology, and crystallinity for all three formulated materials and nano-MgOs. The MgO particle size was determined by the scanning electron microscopy (SEM) and dynamic light scattering (DLS) techniques. An X-ray diffraction (XRD) study confirmed a change in the crystallinity of MgO from a periclase to an Mg(OH)2 brucite crystal structure. As a result, the bactericidal activity correlated with the high crystallinity present in nano-MgOs and SgMc, while the inconsistent antimicrobial potency of SgMg #3 and SgMg #2.5 might have been related to loss of crystallinity. Future studies are needed to determine which specific variables impair the performance of these nanomaterials in the field compared to under greenhouse conditions. Although SgMc did not lead to significant disease severity reduction in the field, it still has the potential to act as an alternative to Cu against bacterial spot disease in tomato transplant production.

Funder

USDA NIFA SCRI project

HATCH funds

University of Florida CALS funds

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3