Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities

Author:

Alowaiesh Bassam F.12,Alhaithloul Haifa Abdulaziz Sakit12,Saad Ahmed M.3,Hassanin Abdallah A.4ORCID

Affiliation:

1. Olive Research Center, Jouf University, Sakaka 72341, Saudi Arabia

2. Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia

3. Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

4. Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

Abstract

Agro-industrial wastes are rich in polyphenols and other bioactive compounds, and valorizing these wastes is a crucial worldwide concern for saving health and the environment. In this work, olive leaf waste was valorized by silver nitrate to produce silver nanoparticles (OLAgNPs), which exhibited various biological, antioxidant, anticancer activities against three cancer cell lines, and antimicrobial activity against multi-drug resistant (MDR) bacteria and fungi. The obtained OLAgNPs were spherical, with an average size of 28 nm, negatively charged at −21 mV, and surrounded by various active groups more than the parent extract based on FTIR spectra. The total phenolic and total flavonoid contents significantly increased in OLAgNPs by 42 and 50% over the olive leaf waste extract (OLWE); consequently, the antioxidant activity of OLAgNPs increased by 12% over OLWE, recording an SC50 of OLAgNPs of 5 µg/mL compared to 30 µg/mL in the extract. The phenolic compound profile detected by HPLC showed that gallic acid, chlorogenic acid, rutin, naringenin, catechin, and propyl gallate were the main compounds in the HPLC profile of OLAgNPs and OLWE; the content of these compounds was higher in OLAgNPs than OLWE by 16-fold. The higher phenolic compounds in OLAgNPs are attributable to the significant increase in biological activities of OLAgNPs than that of OLWE. OLAgNPs successfully inhibited the proliferation of three cancer cell lines, MCF-7, HeLa, and HT-29, by 79–82% compared to 55–67% in OLWE and 75–79% in doxorubicin (DOX). The preliminary worldwide problem is multi-drug resistant microorganisms (MDR) because of the random use of antibiotics. Therefore, in this study, we may find the solution in OLAgNPs with concentrations of 2.5–20 µg/mL, which significantly inhibited the growth of six MDR bacteria L. monocytogenes, B. cereus, S. aureus, Y. enterocolitica, C. jejuni, and E. coli with inhibition zone diameters of 25–37 mm and six pathogenic fungi in the range of 26–35 mm compared to antibiotics. OLAgNPs in this study may be applied safely in new medicine to mitigate free radicals, cancer, and MDR pathogens.

Funder

Olive Research Center at Jouf University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3