Olive leaf extract-assisted green synthesis of cd nano complex: A combined experimental and theoretical study

Author:

Alshammari Mutairah S.,H. Taha RaniaORCID,Almutlq Nowarah J.,Mohamed Sabrein H.

Abstract

Research in the synthesis of Schiff base ligands and their metal complexes using olive leaf extracts as a green reducing agent is an exciting area of study. In this research, a Schiff base ligand is created by combining 1-hydroxy-2-naphthaldehyde and amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide. The synthetic Schiff base is then utilized for the production of a Cd(II) nano complex for the first time with olive leaf extracts serving as the green reducing agent. The extract is obtained by harvesting, drying, and grinding the olive leaves. Various analytical techniques, including 1H NMR, 13C NMR spectroscopy, scanning electron microscope (SEM), and conductivity studies, are employed to analyze the Schiff base and its Cd(II) complex. Quantum chemical calculations are also conducted to explore the different conformers of the Cd(II) complex and their stabilities, shedding light on the synthesis pathways of the Schiff base ligand and Cd(II) complex. Extensive DFT-based geometry optimizations and frequency calculations are carried out for 1-hydroxy-2-naphthaldehyde,amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide, the Schiff base ligand, and the corresponding Cd(II) complex. Experimental and theoretical analyses confirm the presence of the azomethine (-HC = N-) group in the Schiff base and validate the formation of the Cd(II) complex in a 2:1 metal-to-ligand ratio through physicochemical characterization methods, highlighting the nanoscale structure of the complex. Combining thorough physicochemical investigations with molecular modeling simulations and the sustainable synthesis of metal complexes, valuable insights into their properties and potential applications in catalysis and drug delivery are obtained.

Funder

Ministry of Education in Saudi Arabia

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3